Hung V. Nguyen, Baris Lostuvali, Iris D. Tommelein (2010) A3: Decision Analysis Using Virtual First-Run Study of a Viscous Damping Wall System Lean Construction Journal 2010 99-101 www.leanconstructionjournal.org

Decision analysis using virtual first-run study of a viscous damping wall system

Hung V. Nguyen¹, Baris Lostuvali² and Iris D. Tommelein³

Preface to the A3

An A3 is a problem-solving tool, however, it can be used in other ways and the corresponding A3 formats vary depending on the purpose of use. For example, Toyota uses three basic types of A3 reports (Shook 2008, Sobek & Smalley 2008):

- problem solving
- o proposal
- o **status.**

This A3 is a summary of our research on Virtual First-Run Studies (VRFSs), therefore its story line represents the flow and structure of a scientific paper.

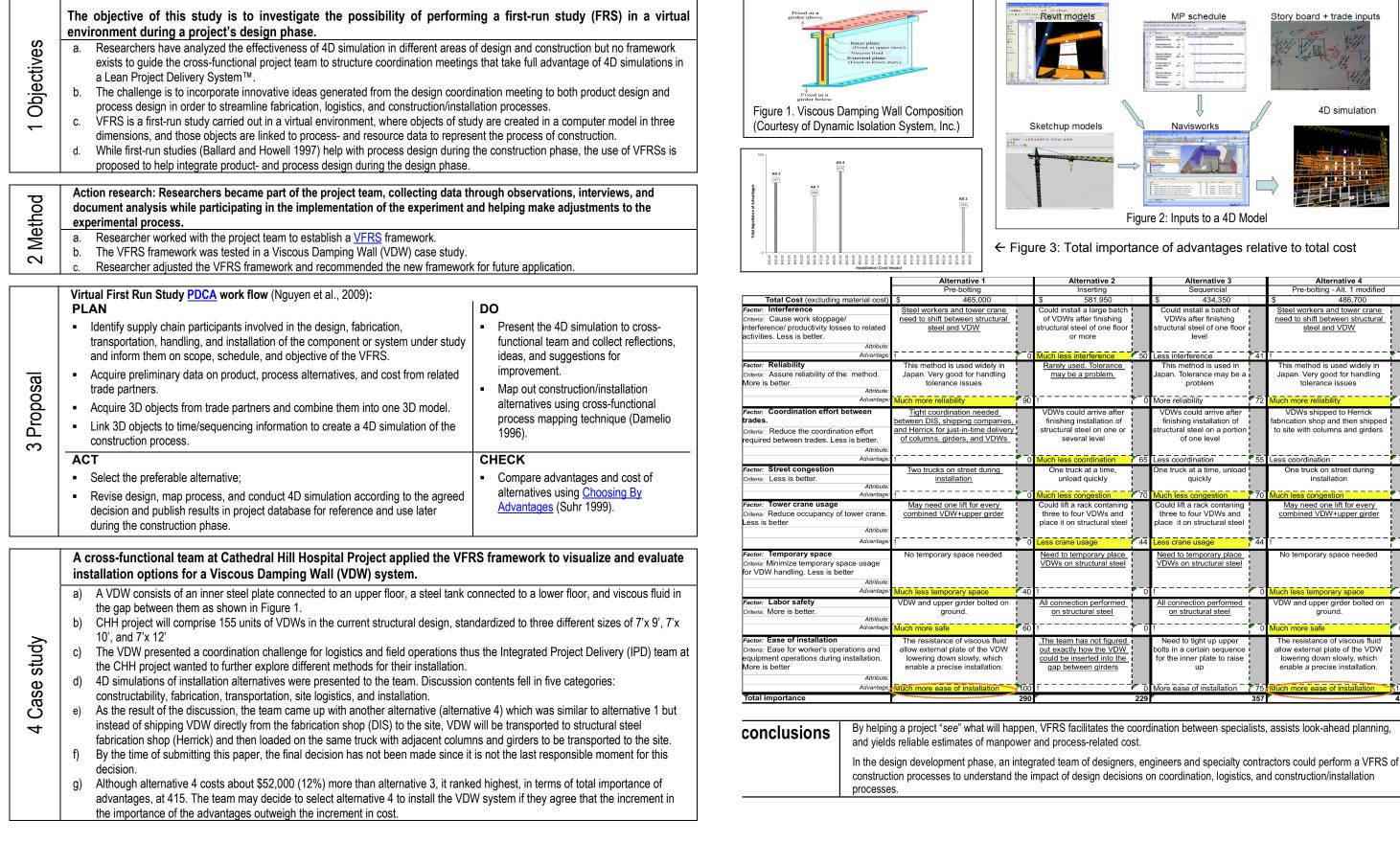
In creating this A3, the authors attempted to structure it so as to add the most value to *Lean Construction Journal* readers. Only the information and data judged to be the most essential are presented in a logical flow to help readers quickly capture the key contents and results of the research. For a detailed description of the research method used, the case study itself, and evidence to support the conclusions, readers may want to read the full paper by Nguyen et al. (2009) published in the Proceedings of the 17th IGLC Annual Conference.

This A3 is submitted by way of experiment to the *Lean Construction Journal* and we look forward to receiving further comments and suggestions from researchers and practitioners on the value of reviewing research results in this format.

We would like to thank contributors to the <u>Project Production Systems Laboratory</u> (P²SL) at the University of California, Berkeley, USA, for providing guidance and financial support of this research. We are also grateful to CPMC, Sutter Health, and HerreroBoldt at the Cathedral Hill Hospital (CHH) project for their generosity in providing training and unlimited access to project data and personnel.

³ Director, Project Production Systems Laboratory http://p2sl.berkeley.edu/ and Professor, Civil and Environmental Engineering Department, 215-A McLaughlin Hall, University of California, Berkeley, CA 94720-1712, Phone +1 510/643-8678, FAX +1 510/643-8919, tommelein@ce.berkeley.edu

¹ PhD Candidate, Civil and Envir. Engrg. Department, 407 McLaughlin Hall, Univ. of California, Berkeley, CA 94720-1712, USA, <u>hung-nguyen@berkeley.edu</u>


 ² Senior Project Manager, HerreroBoldt, CPMC Cathedral Hill Hospital Project, 633 Folsom Street, 6th Floor, San Francisco, CA 94107, Phone +1 415/762-7432, <u>blostuvali@herrero.com</u>
³ Director, Draduction Systems Loberture Loberture Loberture Mathematical Professor, Civil and Professor, Civil a

References used here and in the A3

- Ballard, G., and Howell, G. (1997). "Implementing lean construction: Improving downstream performance." In Alarcon, L. (1997). *Lean construction*. Rotterdam, the Netherlands, 111-125.
- Damelio, R. (1996). Basics of process mapping. New York: Productivity Press.
- Nguyen, H.V., Lostuvali, B., and Tommelein, I.D. (2009). "Decision Analysis using Virtual Firstrun Study of a Viscous Damping Wall System." Proceedings of the 17th Annual Conference of the International Group for Lean Construction (IGLC 17), Taipei, Taiwan, 15-17 July.
- Shook, J. (2008). Managing to Learn: Using the A3 management process to solve problems, gain agreement, mentor and lead. Lean Enterprise Institute, Inc., Cambridge, Massachusetts, 138 pp.
- Sobek II, D.K., and Smalley, A. (2008). Understanding A3 Thinking: A Critical Component of Toyota's PDCA Management System, Taylor & Francis Group, LLC, New York, NY.
- Suhr, J. (1999). The choosing by advantages decisionmaking system. Westport, Connecticut: Quorum Books.

A3: Decision Analysis Using Virtual First-Run Study of a Viscous Damping Wall System

Alternative 2		Alternative 3		Alternative 4	
Inserting		Sequencial		Pre-bolting - Alt. 1 modified	
581,950		\$ 434,350		\$ 486,700	_
tall a large batch s after finishing steel of one floor or more		Could install a batch of VDWs after finishing structural steel of one floor level		Steel workers and tower crane need to shift between structural steel and VDW	
interference	50	Less interference	41		- 0
ised. Tolerance le a problem.		This method is used in Japan. Tolerance may be a problem		This method is used widely in Japan. Very good for handling tolerance issues	
*	0	More reliability	72	Much more reliability	90
ould arrive after g installation of l steel on one or veral level		VDWs could arrive after finishing installation of structural steel on a portion of one level		VDWs shipped to Herrick fabrication shop and then shipped to site with columns and girders	
coordination	65	Less coordination	55	Less coordination	55
uck at a time, bad quickly		One truck at a time, unload quickly		One truck on street during installation	
congestion	70	Much less congestion	70	Much less congestion	70
a rack contaning four VDWs and n structural steel		Could lift a rack contaning three to four VDWs and place it on structural steel		May need one lift for every combined VDW+upper girder	
e usage	44	Less crane usage	44	!	0
emporary place		Need to temporary place VDWs on structural steel		No temporary space needed	
	0		0	Much less temporary space	40
ction performed uctural steel		All connection performed on structural steel		VDW and upper girder bolted on ground.	
*	- 0	·	0	Much more safe	60
n has not figured ly how the VDW inserted into the tween girders		Need to tight up upper bolts in a certain sequence for the inner plate to raise up		The resistance of viscous fluid allow external plate of the VDW lowering down slowly, which enable a precise installation.	
7		More ease of installation			100
	229		357		115